6po
Answered

Which one of these answers is correct (show work please)
ignore the ones that start with i,ii, iii
100 POINTS!!!

Which one of these answers is correct show work please ignore the ones that start with iii iii 100 POINTS class=


Answer :

Answer:

(5) - Option C, [tex]s=3\sqrt{17}[/tex]

(6) - Option D, [tex]-\frac{1}{4} y^{-4}=\frac{1}{3} x^3 -\frac{1}{4}[/tex]

Step-by-step explanation:

Given the following questions.

(5) - Find the arc length of y=4x-3 from A(1,1) to B(4,13)

(6) - Solve the first-order differential equation [tex]y'=x^2y^5[/tex] with the initial condition, [tex]y(0)=1[/tex].

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question #5:

[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Formula for Arc Length:}}\\\\s=\int\limits^b_a {\sqrt{1+(f'(x))^2} } \, dx \end{array}\right}[/tex]

(1) - Take the derivative of the function y

[tex]y=4x-3\\\\\Longrightarrow \boxed{y'=4}[/tex]

(2) - Square y'

[tex]y'=4\\\\\Longrightarrow y'=4^2\\\\\Longrightarrow \boxed{y'=16}[/tex]

(3) - Plug into the formula for arc length

[tex]s=\int\limits^b_a {\sqrt{1+(f'(x))^2} } \, dx \\\\\text{Limits:} \ 1\leq x\leq 4\\\\\Longrightarrow\int\limits^4_1 {\sqrt{1+16} } \, dx \\\\\Longrightarrow\boxed{ \int\limits^4_1 {\sqrt{17} } \, dx} \\[/tex]

(4) - Solve the integral

[tex]\int\limits^4_1 {\sqrt{17} } \, dx \\\\\Longrightarrow \Big [x\sqrt{17} \Big] \right]_{1}^{4}\\\\\Longrightarrow 4\sqrt{17} -\sqrt{17\\}\\\\ \therefore \boxed{s=3\sqrt{17} }[/tex]

Thus, the arc length is found.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Quick note: The question solved for the arc length using a dy integral not a dx integral (which was really unnecessary), so let me clarify that issue.

(1) - Taking the function y, and solving it for x

[tex]y=4x-3\\\\\Longrightarrow y+3=4x\\\\\Longrightarrow \boxed{x=\frac{1}{4}y+\frac{3}{4}}[/tex]

(2) - Repeating steps (1)-(4) from above

[tex]x=\frac{1}{4}y+\frac{3}{4}\\\\\Longrightarrow \boxed{x'=\frac{1}{4}} \\\\\Longrightarrow (x')^2=(\frac{1}{4})^2\\\\\Longrightarrow \boxed{(x')^2=\frac{1}{16}}\\\\s=\int\limits^b_a {\sqrt{1+(f'(x))^2} } \, dy\\\text{Limits:} \ 1\leq y\leq 13\\\\ \Longrightarrow\int\limits^{13}_1 {\sqrt{1+\frac{1}{16} } \, dy\\\\ \Longrightarrow\int\limits^{13}_1 {\sqrt{\frac{17}{16} } \, dy\\\\ \Longrightarrow\int\limits^{13}_1 {\frac{\sqrt{17} }{4} } \, dy\\\\[/tex]

[tex]\Longrightarrow\Big[\frac{\sqrt{17} }{4} y \Big]^{13}_{1}\\\\\Longrightarrow \frac{13\sqrt{17} }{4} -\frac{\sqrt{17} }{4} \\\\\ \Longrightarrow \boxed{\boxed{s=3\sqrt{17} }}[/tex]

Thus, the correct setup according to your question is option C.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question #6:

The given differential equation is separable.

[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Seperable Differential Equation:}}\\\frac{dy}{dx} =f(x)g(y)\\\\\rightarrow\int\frac{dy}{g(y)}=\int f(x)dx \end{array}\right }[/tex]

(1) - Solve the separable DE

[tex]\frac{dy}{dx} =x^2y^5\\\\\Longrightarrow \frac{1}{y^5} dy=x^2dx\\\\\Longrightarrow \int y^{-5}dy= \int x^2 dx\\\\\Longrightarrow \boxed{ -\frac{1}{4} y^{-4}=\frac{1}{3} x^3 +C}[/tex]

(2) - Use the given initial condition to find the arbitrary constant "C"

[tex]\text{Recall} \rightarrow y(0)=1\\\\-\frac{1}{4} y^{-4}=\frac{1}{3} x^3 +C\\\\\Longrightarrow -\frac{1}{4} (1)^{-4}=\frac{1}{3} (0)^3 +C\\\\\Longrightarrow -\frac{1}{4} (1)=0 +C\\\\\therefore \boxed{C=-\frac{1}{4} }[/tex]

(3) - Form the final solution

[tex]\boxed{\boxed{-\frac{1}{4} y^{-4}=\frac{1}{3} x^3 -\frac{1}{4} }}[/tex]

Thus, option D is correct.