Answered

The radius r of a circle is increasing at a rate of 4 centimeters per minute.

- Find the rates of change in the area

when r = 37 centimeters.


- The length s of each side of an equilateral triangle is

increasing at a rate of 13 feet per hour. Find the rate of change

of the area when s = 41 feet.



Answer :

Answer:

929.91 cm²/min

461.59 ft²/min

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{4cm}\underline{Area of a circle}\\\\$A=\pi r^2$\\\\where:\\ \phantom{ww}$\bullet$ $r$ is the radius. \\ \end{minipage}}[/tex]

Differentiate the expression for area with respect to r:

[tex]\implies \dfrac{\text{d}A}{\text{d}r}=2\pi r[/tex]

Given the radius is increasing at a rate of 4 centimeters per minute:

  • [tex]\dfrac{\text{d}r}{\text{d}t}=4[/tex]

Use the chain rule to find an expression for the rate of change in the area with respect to time:

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=\dfrac{\text{d}A}{\text{d}r} \times \dfrac{\text{d}r}{\text{d}t}[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=2 \pi r \times 4[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=8 \pi r[/tex]

When r = 37 cm:

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=8\pi (37)[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=296 \pi[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=929.91\; \sf (2\;d.p.)[/tex]

Therefore, the rate of change in the area when the radius is 37 centimeters is 929.91 cm²/min.

--------------------------------------------------------------------------------------

[tex]\boxed{\begin{minipage}{5 cm}\underline{Area of an equilateral triangle}\\\\$A=\dfrac{\sqrt{3}}{4}s^2$\\\\where:\\ \phantom{ww}$\bullet$ $s$ is the side length. \\ \end{minipage}}[/tex]

Differentiate the expression for area with respect to s:

[tex]\implies \dfrac{\text{d}A}{\text{d}s}=\dfrac{2\sqrt{3}}{4}s=\dfrac{\sqrt{3}}{2}s[/tex]

Given the length of each side is increasing at a rate of 13 feet per hour.

[tex]\implies \dfrac{\text{d}s}{\text{d}t}=13[/tex]

Use the chain rule to find an expression for the rate of change of the area with respect to time:

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=\dfrac{\text{d}A}{\text{d}s} \times \dfrac{\text{d}s}{\text{d}t}[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=\dfrac{\sqrt{3}}{2}s \times 13[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=\dfrac{13\sqrt{3}}{2}s[/tex]

When s = 41 ft:

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=\dfrac{13\sqrt{3}}{2}(41)[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=\dfrac{533\sqrt{3}}{2}[/tex]

[tex]\implies \dfrac{\text{d}A}{\text{d}t}=461.59 \sf \;\;(2\;d.p.)[/tex]

Therefore, the rate of change in the area when the side length is 41 feet is 461.59 ft²/min.

Differentiation rules used:

[tex]\boxed{\begin{minipage}{4.5 cm}\underline{Differentiating $x^n$}\\\\If $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=nx^{n-1}$\\\end{minipage}}[/tex]