For [tex]\rm x \in \mathbb{R}[/tex], let the function y(x) be the solution of the differential equation
[tex] \rm \frac{dy}{dx} + 12y = \cos \bigg( \frac{\pi}{12}x \bigg ) , \: \: \: \: y(0) = 0 \\ [/tex]
Then, which of the following statements is/are TRUE?

(A) y(x) is an increasing function

(B) y(x) is a decreasing function

(C) There exists a real number β such that the line y = β intersects the curve y = y(x) at infinitely many points

(D) y(x) is a periodic function



Answer :

In the differential equation

[tex]\dfrac{dy}{dx} + 12y = \cos\left(\dfrac{\pi x}{12}\right)[/tex]

multiply on both sides by the integrating factor

[tex]\mu = \exp\left(\displaystyle\int12\,dx\right) = e^{12x}[/tex]

Then the left side condenses to the derivative of a product.

[tex]e^{12x} \dfrac{dy}{dx} + 12 e^{12x} y = e^{12x} \cos\left(\dfrac{\pi x}{12}\right)[/tex]

[tex]\dfrac{d}{dx}\left[e^{12x}y\right] = e^{12x}\cos\left(\dfrac{\pi x}{12}\right)[/tex]

Integrate both sides with respect to [tex]x[/tex], and use the initial condition [tex]y(0)=0[/tex] to solve for the constant [tex]C[/tex].

[tex]\displaystyle \int \frac{d}{dx} \left[e^{12x}y\right] \, dx = \int e^{12x} \cos\left(\dfrac{\pi x}{12}\right) \, dx[/tex]

As an alternative to integration by parts, recall

[tex]e^{ix} = \cos(x) + i \sin(x)[/tex]

Now

[tex]e^{12x} \cos\left(\dfrac{\pi x}{12}\right) = e^{12x} \mathrm{Re}\left(e^{i\pi x/12}\right) = \mathrm{Re}\left(e^{(12+i\pi/12)x}\right)[/tex]

[tex]\displaystyle \int \mathrm{Re}\left(e^{(12+i\pi/12)x}\right) \, dx = \mathrm{Re}\left(\int e^{(12+i\pi/12)x} \, dx\right)[/tex]

[tex]\displaystyle. ~~~~~~~~ = \mathrm{Re}\left(\frac1{12+i\frac\pi{12}} e^{(12+i\pi/12)x}\right) + C[/tex]

[tex]\displaystyle. ~~~~~~~~ = \mathrm{Re}\left(\frac{12 - i\frac\pi{12}}{12^2 + \frac{\pi^2}{12^2}} e^{12x} \left(\cos\left(\frac{\pi x}{12}\right) + i \sin\left(\frac{\pi x}{12}\right)\right)\right) + C[/tex]

[tex]\displaystyle. ~~~~~~~~ = \frac{12}{12^2 + \frac{\pi^2}{12^2}} e^{12x} \cos\left(\frac{\pi x}{12}\right) + \frac\pi{12} e^{12x} \sin\left(\frac{\pi x}{12}\right) + C[/tex]

[tex]\displaystyle. ~~~~~~~~ = \frac1{12(12^4+\pi^2)} e^{12x} \left(12^4 \cos\left(\frac{\pi x}{12}\right) + \pi (12^4+\pi^2) \sin\left(\frac{\pi x}{12}\right)\right) + C[/tex]

Solve for [tex]y[/tex].

[tex]\displaystyle e^{12x} y = \frac1{12(12^4+\pi^2)} e^{12x} \left(12^4 \cos\left(\frac{\pi x}{12}\right) + \pi (12^4+\pi^2) \sin\left(\frac{\pi x}{12}\right)\right) + C[/tex]

[tex]\displaystyle y = \frac1{12(12^4+\pi^2)} \left(12^4 \cos\left(\frac{\pi x}{12}\right) + \pi (12^4+\pi^2) \sin\left(\frac{\pi x}{12}\right)\right) + C[/tex]

Solve for [tex]C[/tex].

[tex]y(0)=0 \implies 0 = \dfrac1{12(12^4+\pi^2)} \left(12^4 + 0\right) + C \implies C = -\dfrac{12^3}{12^4+\pi^2}[/tex]

So, the particular solution to the initial value problem is

[tex]\displaystyle y = \frac1{12(12^4+\pi^2)} \left(12^4 \cos\left(\frac{\pi x}{12}\right) + \pi (12^4+\pi^2) \sin\left(\frac{\pi x}{12}\right)\right) - \frac{12^3}{12^4+\pi^2}[/tex]

Recall that

[tex]R\cos(\alpha-\beta) = R\cos(\alpha)\cos(\beta) + R\sin(\alpha)\sin(\beta)[/tex]

Let [tex]\alpha=\frac{\pi x}{12}[/tex]. Then

[tex]\begin{cases} R\cos(\beta) = 12^4 \\ R\sin(\beta) = 12^4\pi+\pi^3 \end{cases} \\\\ \implies \begin{cases} (R\cos(\beta))^2 + (R\sin(\beta))^2 = R^2 = 12^8 + (12^4\pi + \pi^3)^2 \\ \frac{R\sin(\beta)}{R\cos(\beta)}=\tan(\beta)=\pi+\frac{\pi^3}{12^4}\end{cases}[/tex]

Whatever [tex]R[/tex] and [tex]\beta[/tex] may actually be, the point here is that we can condense [tex]y[/tex] into a single cosine expression, so choice (D) is correct, since [tex]\cos(x)[/tex] is periodic. This also means choice (C) is also correct, since [tex]\beta=\cos(x)\implies\beta=\cos(x+2n\pi)[/tex] for infinitely many integers [tex]n[/tex]. This simultaneously eliminates (A) and (B).