Consider the sequence of real numbers
[tex] \rm a_1 = \frac{ log_{2}( {3}^{2} ) }{ log_{3}(2) } ,a_2 = \frac{ log_{ {3}^{3} }( {4}^{4} ) }{ log_{ {4}^3}( {3}^{4} ) } ,a_3 = \frac{ log_{ {4}^5 }( {5}^{6} ) }{ log_{ {5}^{5} }( {4}^{9} ) }, \dots[/tex]
In general, [tex] \rm a_k = \frac{ log_{(k + 1) ^{(2k - 1)} } ((k + 2 {)}^{2k}) }{log_{(k + 2) ^{(2k - 1)} } ((k + 1 {)}^{ {k}^{2} })} [/tex]

Let [tex] \rm P_n = \frac{ log_{ {(n + 1)}^{(2n - 1)} }( {2}^{2n} ) }{ log_{ {2}^{(2n - 1)} }((n + 1) {}^{ {n}^{2} } )} \cdot \prod \limits_{k = 1}^{n - 1} a_k[/tex] for integer n [tex]\geq [/tex] 2.

[tex] \rm Find \sum \limits_{n = 2}^{ \infty } P_n[/tex]



Answer :

Use the change-of-base identity and the exponent property for logarithms.

[tex]\log_b(a) = \dfrac{\log_c(a)}{\log_c(b)} \implies \log_b(a) = \dfrac1{\log_a(b)}[/tex]

[tex]\log_c(a^b) = b \log_c(a)[/tex]

This lets us rewrite

[tex]\log_{(k+1)^{2k-1}} (k+2)^{2k} = \dfrac{2k}{\log_{k+2}(k+1)^{2k-1}} = \dfrac{2k}{(2k-1) \log_{k+2}(k+1)}[/tex]

[tex]\log_{(k+2)^{2k-1}} (k+1)^{k^2} = \dfrac{k^2}{\log_{k+1} (k+2)^{2k-1}} = \dfrac{k^2}{(2k-1) \log_{k+1}(k+2)}[/tex]

It follows that

[tex]a_k = \dfrac2k \dfrac{\log_{k+2}(k+1)}{\log_{k+1}(k+2)} = \dfrac2k \left(\ln^2(k+1)}{\ln^2(k+2)}[/tex]

so that the product of [tex]a_k[/tex] telescopes:

[tex]\displaystyle \prod_{k=1}^{n-1} a_k = \frac{2^{n-1}}{(n-1)!} \frac{\ln^2(2)}{\ln^2(3)}\cdot\frac{\ln^2(3)}{\ln^2(4)}\cdot\frac{\ln^2(4)}{\ln^2(5)} \cdots \frac{\ln^2(n-1)}{\ln^2(n)} \cdot \frac{\ln^2(n)}{\ln^2(n+1)} \\\\ ~~~~~~~~ = \frac{2^{n-1}}{(n-1)!} \frac{\ln^2(n+1)}{\ln^2(2)}[/tex]

We can similar reduce the coefficient of [tex]P_n[/tex] to write

[tex]\log_{(n+1)^{2n-1}}(2^{2n}) = \dfrac{2n}{(2n-1) \log_2(n+1)}[/tex]

[tex]\log_{2^{2n-1}}(n+1)^{n^2} = \dfrac{n^2}{(2n-1)\log_{n+1}(2)}[/tex]

[tex]\implies \dfrac{\log_{(n+1)^{2n-1}}(2^{2n})}{\log_{2^{2n-1}}(n+1)^{n^2}} = \dfrac2n \dfrac{\ln^2(2)}{\ln^2(n+1)}[/tex]

Then the expression for [tex]P_n[/tex] reduces significantly to

[tex]P_n = \dfrac2n \dfrac{\ln^2(2)}{\ln^2(n+1)} \cdot \dfrac{2^{n-1}}{(n-1)!} \dfrac{\ln^2(n+1)}{\ln^2(2)} = \dfrac{2^n}{n!}[/tex]

and we ultimately find

[tex]\displaystyle \sum_{n=2}^\infty P_n = \sum_{n=0}^\infty \frac{2^n}{n!} - \frac{2^1}{1!} - \frac{2^0}{0!} = \boxed{e^2 - 3}[/tex]

where we recall the power series

[tex]\displaystyle e^x = \sum_{n=0}^\infty \frac{x^n}{n!}[/tex]