Answer :

(A) (m,n) = g(n,m) for all positive integers m,n,

(B) (m,n + 1) = g(m + 1,n) for all positive integers m,n,

(D) (2m,2n) = (g(m,n))2 for all positive integers m,n

Explanation

[tex] \rm f(m,n,p) = \sum \limits_{i = 0}^{p} {}^{m} C_{i} \: \: {}^{n + i} C_{p} \: \: {}^{p + n} C_{p - i}[/tex]

[tex]\rm {}^{m} C_{i} \: \: {}^{n + i} C_{p} \: \: {}^{p + n} C_{p - i}[/tex]

[tex]\rm {}^{m} C_{i} \dfrac{(n + i)!}{p!(n - p + i)!} \times \dfrac{(n + p)!}{(p - i)!(n + i)!} [/tex]

[tex]\rm {}^{m} C_{i} \times \dfrac{(n + p)!}{p!} \times \dfrac{1!}{(n -p + i)!(p - i)!} [/tex]

[tex]\rm {}^{m} C_{i} \times \dfrac{(n + p)!}{p!} \times \dfrac{1!}{(n -p + i)!(p - i)!} [/tex]

[tex]\rm {}^{m} C_{i} \times \dfrac{(n + p)!}{p!n!} \times \dfrac{n!}{(n -p + i)!(p - i)!} [/tex]

[tex]\rm {}^{m} C_{i} \: \: {}^{n + p} C_{p} \: \: {}^{n} C_{p - i} \: \: \{{}^{m} C_{i} \: \: {}^{n } C_{p - i} = {}^{m + n} C_{p } \}[/tex]

[tex]\rm {}^{m} C_{i} \: \: {}^{n + p} C_{p} \: \: {}^{n} C_{p - i} \: \: \{{}^{m} C_{i} \: \: {}^{n } C_{p - i} = {}^{m + n} C_{p } \}[/tex]

[tex] \rm f(m,n,p) = {}^{n + p} C_{p}{}^{m + n} C_{p}[/tex]

[tex] \rm \dfrac{f(m,n,p)}{{}^{n + p} C_{p}} = {}^{m + n} C_{p}[/tex]

Now,

[tex] \rm g(m,n) = \sum \limits_{p = 0}^{m + n} \dfrac{f(m,n,p)}{{}^{n + p} C_{p}} [/tex]

[tex] \rm g(m,n) = \sum \limits_{p = 0}^{m + n} {}^{m + n} C_{p}[/tex]

[tex] \rm g (m,n) = {2}^{m + n} [/tex]

[tex] \rm(A) \: g(m,n) = q(n,m)[/tex]

[tex] \rm(B) \: g(m,n + 1) = {2}^{m + n + 1} [/tex]

[tex] \rm g(m + n,n ) = {2}^{m + 1 + n} [/tex]

[tex] \rm(D) \: g(2m,2n) = {2}^{2m + 2n} [/tex]

[tex] = \rm( {2}^{m + n} {)}^{2} [/tex]

[tex] = \rm(g(m,n)) {}^{2} [/tex]